THE ISSUE OF AI-BASED SUPPORT FOR STRUGGLING READERS THROUGH THE LENS OF UDL PRINCIPLES

IL SUPPORTO BASATO SULL'INTELLIGENZA ARTIFICIALE PER LETTORI SVANTAGGIATI ATTRAVERSO LA LENTE DEI PRINCIPI DELL'UDL

Andrea Mangiatordi University of Milano-Bicocca, Italy andrea.mangiatordi@unimib.it

Diego Joseph Villalón University of Milano-Bicocca, Italy diego.villalon@unimib.it

Double Blind Peer Review

Citation

Mangiatordi, A., Villalón, D.J., & Caldiroli, C.L. (2025). The issue of ai-based support for struggling readers through the lens of UDL principles. Giornale italiano di educazione alla salute, sport e didattica inclusiva, 9(2).

Doi:

https://doi.org/10.32043/gsd.v9i2.1477

Copyright notice:

© 2023 this is an open access, peer-reviewed article published by Open Journal System and distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

gsdjournal.it

ISSN: 2532-3296

ISBN: 978-88-6022-510-8

ABSTRACT

One of Universal Design for Learning principles suggests to "design multiple means of representation" (CAST, 2024) and it can be applied to text accessibility by granting 1) readability and legibility, 2) disambiguation of terms and symbols, and 3) support to comprehension through various means. Text simplification is often mentioned as a possibility offered by AI for struggling readers. In this contribution we argue that it can efficiently be combined with intelligent tutoring systems in order to achieve better results that are in line with UDL guidelines.

Uno dei principi dell'Universal Design for Learning suggerisce di "progettare molteplici mezzi di rappresentazione" (CAST, 2024) e può essere applicato all'accessibilità dei testi garantendo 1) leggibilità e comprensibilità, 2) disambiguazione di termini e simboli e 3) supporto comprensione attraverso vari mezzi e modalità. La semplificazione dei testi è spesso citata come una possibilità offerta dall'IA per i lettori in difficoltà. In questo contributo sosteniamo che essa può essere efficacemente combinata con sistemi di tutoraggio intelligente al fine di ottenere risultati migliori in linea con le linee guida UDL.

KEYWORDS

Inglese: Text simplification; Struggling readers; Recognition network Italiano: Semplificazione del testo; Lettori in difficoltà; Network di riconoscimento.

Received 30/04/2025 Accepted 29/05/2025 Published 20/06/2025

Introduction

Universal Design for Learning (UDL) offers a powerful framework to address accessibility issues in learning content by promoting flexible and inclusive instructional practices, including the design of "multiple means of representation". This is one of the three main principles of the UDL framework, together with "design multiple means of engagement" and "design multiple means of expression" (CAST, 2024). According to UDL, in order to provide multiple means of representation it is necessary to take into consideration at least three aspects, that are reflected in UDL guidelines n. 1, 2 and 3:

- 1. Design Options for Perception
- 2. Design Options for Language & Symbols
- 3. Design Options for Building Knowledge

These three guidelines reflect three dimensions of reading comprehension: a reader must be able to perceive text; it must then be able to decode all symbols, words and expressions efficiently; finally, it must be able to understand the meaning of the text, which largely depends on the style it is written in and on its complexity. Digital technology offers many ways to address the mentioned dimensions. In the case of simple perception, for example, we know that digital text offers many ways to customize fonts and overall pagination to allow for better text readability. Then there is the possibility to facilitate decoding of text by providing additional information through dictionary and web searches. Text comprehension is a little less straightforward, but there is actual abundance of calculators for ease of reading that can be incorporated also in writing tools.

The main hypothesis behind this work is based on the idea that newer technological solutions, like virtual tutors powered by Generative AI based on Large Language Models (LLMs), can be effectively used to implement solutions that are in line with the above-mentioned needs and that provide even better support compared to more "traditional" solutions. The focus is on the way an interface can be built to sustain such an effort.

Al technologies offer promising tools for tailoring textual content to diverse learner needs. Text simplification using AI (Hedlin et al., 2025; Padovani et al., 2024), automated question generation (Liu et al., 2024), and dialog-based tutoring systems (McCarthy & Yan, 2024). All these solutions represent innovative strategies for enhancing readability, promoting engagement, and supporting deeper understanding. However, these approaches are often investigated in isolation.

This paper proposes the exploration of a design concept for a set of AI virtual tutors that would allow to apply multiple strategies to the integration of these techniques to scaffold reading comprehension for struggling readers. Grounded in UDL principles and informed by recent advancements in educational technology, this work seeks to examine how a set of AI chatbots can serve as an effective, scalable, and accessible reading aid by streamlining the user experience of readers. The ultimate goal is to bridge a gap identified in existing research and communication papers about the use of AI assistants based on LLMs to provide more accessible text to struggling readers: this possibility is mentioned by many researchers, but it is often unclear how better readability could be achieved. Practitioners and users could greatly benefit of a unified model based on learning design theory - such as UDL - that would be able to provide clear directions on how to achieve such simplification.

1. State of the art in Al-based text simplification

Recent studies in Al-based text simplification have employed a range of methodologies. In some cases hybrid approaches have been employed, combining rule-based techniques with neural networks (Bahrainian, Dou, & Eickhoff, 2024; Maddela, Alva-Manchego, & Xu, 2021; Narayan & Gardent, 2014; Štajner & Glavaš, 2017; Truică, Stan, & Apostol, 2023); in some other cases, sequence-to-sequence models were adopted (Martin, Sagot, Clergerie, & Bordes, 2019; Nisioi, Štajner, Ponzetto, & Dinu, 2017); other techniques that were used include neural machine translation (Alissa & Wald, 2023), edit-based methods (Omelianchuk, Raheja, & Skurzhanskyi, 2021), and phrase-based machine translation (Wubben, Bosch, & Krahmer, 2012a).

Text simplification effectiveness is evaluated through several key measurement approaches. Automated Metrics like SARI (System output Against References and against the Input sentence) is specifically designed for text simplification and appears frequently across studies (Kumar, Mou, Golab, & Vechtomova, 2020; Phatak, Savage, Ohle, Smith, & Mago, 2022). BLEU (Bilingual Evaluation Understudy) is commonly used to measure similarity between model output and reference simplifications (Alissa & Wald, 2023; Campillos-Llanos et al., 2024). Flesch-Kincaid Grade Level (FKGL) is frequently used to assess text complexity (Wubben, Bosch, & Krahmer, 2012b; Zhang & Lapata, 2017).

Another commonly used approach is human assessment, which can be used to evaluate many different aspects, such as: fluency and adequacy (Kumar et al., 2020), simplicity and meaning preservation (Woodsend & Lapata, 2011), and grammaticality (Štajner, 2015).

While automated metrics provide quantifiable results, the combination of both automated and human evaluation methods offers the most reliable assessment of simplification effectiveness, as different metrics capture different aspects of the simplification quality.

The utilisation of generative AI in text simplification research has yielded findings that suggest the efficacy of methodologies integrating user control with adaptive, context-aware processing in enhancing text access for groups of disadvantaged readers. For example, research on individuals with dyslexia showed that lexical simplification with on-demand synonym displays enhanced readability and comprehension, and transfer learning applied to produce dyslexia-friendly text improved the reading experience by 27% (Madjidi & Crick, 2023). Research focused on non-native speakers demonstrated that resource-light neural models and context-aware word embeddings reduced errors by up to 25% and performed as effectively as systems based on manually simplified corpora (Paetzold, 2016). In language learners, gaze-driven systems that integrate GPT-3.5 improved sentencelevel comprehension, while BERT-driven applications increased accessibility for readers with low literacy or cognitive disabilities (Higasa, Tanaka, Feng, & Morishima, 2023; Jin, Sun, & Li, 2024). Studies indicate that balancing automated text modification with user-directed features - such as on-demand lexical substitution and adaptive simplification – offers promising benefits for non-native speakers, individuals with learning disabilities, and low-education populations (Alonzo, Seita, Glasser, & Huenerfauth, 2020; Higasa et al., 2023; Rello, Baeza-Yates, Bott, & Saggion, 2013).

The evidence collated from academic literature appears to support the hypothesis that the utilisation of generative AI is a favourable option for the simplification of text, particularly in the context of addressing disadvantaged readers. In the next section we will explore the possibilities that open up when this approach is combined with a comprehensive theory, like the UDL framework, to obtain dynamic results that can be adapted to a variety of populations and needs.

2. Methods and Materials

The present study concentrated on UDL guidelines 1, 2 and 3. It is asserted that Guideline 1, "Design Options for Perception", can be addressed by applying various types of typographical adjustments to text, without recourse to generative Al (Caldiroli et al., 2017; Mangiatordi & Sareen, 2011).

This preliminary supposition enabled us to concentrate on formulating particular prompts for two chatbots, which were designed to address guidelines n. 2 and 3. We proceeded to the creation of two very simple chatbots, each one connected with the requirements set by these two guidelines.

For guideline n. 2, "Design Options for Language & Symbols", we envisioned that the main support that could come from a chatbot, also based on what was discussed in the previous section, would be an automated provider of word definitions. We created this basic prompt:

 You are an AI chatbot. You are a little robot eager to help a primary school child discover the meaning of words. Every time you receive a word, you try to give a definition. When asked for the definition of a vulgar word, refer the user to an adult or teacher.

The main advantage of a chatbot based on this simple directive is that it does not require the user to explain what they want to achieve, speeding up the process of discovering the meaning of difficult words to such an extent that it is possible to imagine a reading interface in which the selection of a single word immediately activates this solution. Symbols and special characters are supported natively, leveraging the ability to recognise characters such as π and \Re available to the underlying LLM (using the gpt-3.5-turbo model from OpenAI).

To address the requirements of UDL guideline n. 3, "Design Options for Building Knowledge", we emphasized the aspect of reading ease by instructing a second chatbot with the following fixed prompt:

You are a teacher and your main role is to disambiguate references in complex sentences for children who need to read simpler sentences consisting of a subject, predicate and as few complements as possible. Your main goal is to construct simple sentences that can be used to better understand the text, necessarily returning a bulleted list. It doesn't matter if you have to repeat the same words many times, you must always return a list of minimal, meaningful sentences.

The main aspect that is visible here is the stress on "simple sentences", including just the minimum required to express simple and linear ideas. The chatbot expects a chunk of text, which means that for future implementations it should be connected with the selection of sentences or entire paragraphs. The phrases generated in this way can be easily reused as a basis for constructing concept maps, advanced information organisers whose usefulness is well known, especially for people with specific learning disorders (Novak, Gowin, & Johansen, 1983).

Testing the generative AI system revealed that it effectively simplified complex texts into clear, concise sentences while maintaining the core meaning. The system consistently produced grammatically correct output and demonstrated a strong ability to identify and preserve key information. However, in some cases, subtle nuances or technical details were lost during simplification, highlighting the trade-off between readability and depth. Overall, the results suggest the system performs reliably for general summarization tasks but may require further tuning for domain-specific content. As an example, we provide here some of the outputs obtained by feeding the chatbot a paragraph about French Revolution that was taken from the English Wikipedia, which scored 13.6 on the Flesch-Kincaid Grade Level and 39.2 on the Flesch Reading Ease Score, meaning its level is "College" (Difficult to read):

- The French Revolution was a period of political and societal change in France.
- It began with the Estates General of 1789 and ended with the Coup of 18 Brumaire in 1799.
- The revolution's ideas are considered fundamental principles of liberal democracy.
- Its values remain central to modern French political discourse.
- The causes of the revolution include social, political, and economic factors.
- A financial crisis and social distress led to the convocation of the Estates General in May 1789.
- The representatives of the Third Estate broke away and formed a National Assembly in June.
- The Storming of the Bastille in Paris on July 14 was followed by radical measures by the Assembly.

The integration of tools that facilitate typographical modifications to text, in conjunction with the utilisation of two chatbots like the ones described here, constitutes a cost-effective approach to achieving the implementation of the selected Universal Design for Learning (UDL) guidelines.

We anticipate that the combination of the two chatbots described here will demonstrate measurable improvements in reading comprehension for struggling readers when compared to performance without AI support.

These outcomes will support our hypothesis that newer technological solutions, like virtual tutors powered by Generative AI based on LLMs, can be effectively used to implement solutions that are in line with the above mentioned needs and that provide even better support compared to more "traditional" solutions. This also aligns with UDL principles and allows to implement the variated degrees of support that the framework so strongly emphasizes.

3. Discussion

The experience collected from this study has implications for both research and practice in inclusive education and educational technology. All chatbots could exemplify how multiple Al-supported strategies - namely word definitions and text simplification - can be meaningfully integrated to address the needs of struggling readers. Such integration reflects the spirit of UDL, which emphasizes the proactive design of learning environments to accommodate learner variability.

From a theoretical perspective, the work conducted thus far contributes to a growing body of literature that seeks to operationalise UDL principles using cutting-edge technologies. The present study extends prior research by demonstrating how generative AI can not only adapt text content but also provide metacognitive and interactive supports that promote agency and comprehension.

Practically, the use of multiple, specialized virtual tutors like the ones discussed here offers a promising model for scaling individualized support in mainstream classrooms, potentially reducing dependence on one-to-one human intervention. This is especially relevant in contexts where educators face high student-to-teacher ratios and limited resources for differentiated instruction.

Nonetheless, several challenges must be acknowledged. The accuracy and appropriateness of Al-generated content, particularly in sensitive educational contexts, must be rigorously monitored. Ensuring that the tutor's feedback remains developmentally appropriate and culturally responsive will be critical. Additionally, long-term studies will be required to assess whether these tools foster durable comprehension improvements or only short-term gains.

Future research should investigate how learners with different profiles (e.g., dyslexia, multilingual backgrounds, ADHD) interact with and benefit from different

combinations of AI strategies, and how such systems can be optimized through learner feedback loops.

Conclusions

The objective of this proposed study is to establish a connection between Alpowered reading tools and inclusive educational frameworks by integrating and aligning multiple virtual tutors with the fundamental principles of Universal Design for Learning. The integration of specific responses to UDL guidelines 1, 2 and 3 is expected to provide a scalable and personalised approach to supporting struggling readers, as facilitated by the AI tutor.

The anticipated benefits span improved comprehension outcomes, greater learner autonomy, and reduced instructional burden — all of which are vital in increasingly diverse and resource-constrained classrooms. Furthermore, this research contributes to the growing discourse on responsible and pedagogically informed applications of generative AI in education.

Ultimately, the project seeks to demonstrate that when AI tools are carefully designed with learner variability in mind, they can offer not just accessibility, but true equity in reading and learning opportunities.

Author contributions

All authors have participated in the ideation and in the planning of the paper, in a collaborative effort. Diego Villalon wrote the introduction and the state of the art, Andrea Mangiatordi wrote the "methods and materials" section, Cristina Caldiroli wrote the discussion. All three authors participated in writing the conclusions.

References

Alissa, S., & Wald, M. (2023). Text Simplification Using Transformer and BERT. Computers, Materials & Continua, 75(2), 3479–3495. https://doi.org/10.32604/cmc.2023.033647

Alonzo, O., Seita, M., Glasser, A., & Huenerfauth, M. (2020). Automatic Text Simplification Tools for Deaf and Hard of Hearing Adults: Benefits of Lexical Simplification and Providing Users with Autonomy. International Conference on

Human Factors in Computing Systems. Recuperato da https://www.semanticscholar.org/paper/Automatic-Text-Simplification-Tools-for-Deaf-and-of-Alonzo-Seita/15e11b0e326f7122d819cb95c0ad84d2a8d581c8

Bahrainian, S. A., Dou, J., & Eickhoff, C. (2024). Text Simplification via Adaptive Teaching. In L.-W. Ku, A. Martins, & V. Srikumar (A c. Di), Findings of the Association for Computational Linguistics: ACL 2024 (pp. 6574–6584). Bangkok, Thailand: Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.findings-acl.392

Caldiroli, C. L., Garbo, R., Pallavicini, F., Antonietti, A., Mangiatordi, A., & Mantovani, F. (2017). How web design influences user experience: A multi-modal method for real-time assessment during web browsing. 2017 14th IEEE Annual Consumer Communications and Networking Conference, CCNC 2017. https://doi.org/10.1109/CCNC.2017.7983286

Campillos-Llanos, L., Reinares, A. R. T., Bartolomé, R., Valverde-Mateos, A., González, C., Capllonch-Carrión, A., & Heras, J. (2024). Replace, Paraphrase or Finetune? Evaluating Automatic Simplification for Medical Texts in Spanish. Presentato al International Conference on Language Resources and Evaluation. Recuperato da https://www.semanticscholar.org/paper/Replace%2C-Paraphrase-or-Fine-tune-Evaluating-for-in-Campillos-Llanos-

Reinares/aa64ccd6e0b3c874d450b3755b093deb230944b9

CAST. (2024). Universal Design for Learning Guidelines version 3.0. Author. Recuperato da https://udlguidelines.cast.org/

Hedlin, E., Estling, L., Wong, J., Demmans Epp, C., & Viberg, O. (2025). Got It! Prompting Readability Using ChatGPT to Enhance Academic Texts for Diverse Learning Needs. Proceedings of the 15th International Learning Analytics and Knowledge Conference, 115–125. Dublin Ireland: ACM. https://doi.org/10.1145/3706468.3706483

Higasa, T., Tanaka, K., Feng, Q., & Morishima, S. (2023). Gaze-Driven Sentence Simplification for Language Learners: Enhancing Comprehension and Readability. Companion Publication of the 25th International Conference on Multimodal Interaction, 292–296. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3610661.3616177

Jin, J., Sun, Y., & Li, A. (2024). A Smart Mobile Platform to Assist with Reading Comprehension using Machine Learning and Lexical Simplification. Computer

Science, Engineering and Information Technology. https://doi.org/10.1145/3610661.3616177

Kumar, D., Mou, L., Golab, L., & Vechtomova, O. (2020). Iterative Edit-Based Unsupervised Sentence Simplification. In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (A c. Di), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 7918–7928). Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.707

Liu, M., Zhang, J., Nyagoga, L. M., & Liu, L. (2024). Student-Al Question Cocreation for Enhancing Reading Comprehension. IEEE Transactions on Learning Technologies, 17, 815–826. https://doi.org/10.1109/TLT.2023.3333439

Maddela, M., Alva-Manchego, F., & Xu, W. (2021). Controllable Text Simplification with Explicit Paraphrasing. In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, ... Y. Zhou (A c. Di), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 3536–3553). Online: Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.naacl-main.277

Madjidi, E., & Crick, C. (2023). Enhancing Textual Accessibility for Readers with Dyslexia through Transfer Learning. Proceedings of the 25th International ACM SIGACCESS Conference on Computers and Accessibility, 1–5. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3597638.3614473

Mangiatordi, A., & Sareen, H. S. (2011). Farfalla project: Browser-based accessibility solutions. Proceedings of the International Cross-Disciplinary Conference on Web Accessibility - W4A '11. New York, New York, USA: ACM Press. https://doi.org/10.1145/1969289.1969317

Martin, L., Sagot, B., Clergerie, E. V. de la, & Bordes, A. (2019). Controllable Sentence Simplification. ArXiv. Recuperato da https://www.semanticscholar.org/paper/Controllable-Sentence-Simplification-Martin-Sagot/a2a03a8fff4d818ecee4bc07d218f716d7e49696

McCarthy, K. S., & Yan, E. F. (2024). Reading Comprehension and Constructive Learning: Policy Considerations in the Age of Artificial Intelligence. Policy Insights from the Behavioral and Brain Sciences, 11(1), 19–26. https://doi.org/10.1177/23727322231218891

Narayan, S., & Gardent, C. (2014). Hybrid Simplification using Deep Semantics and Machine Translation. In K. Toutanova & H. Wu (A c. Di), Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers) (pp. 435–445). Baltimore, Maryland: Association for Computational Linguistics. https://doi.org/10.3115/v1/P14-1041

Nisioi, S., Štajner, S., Ponzetto, S. P., & Dinu, L. P. (2017). Exploring Neural Text Simplification Models. In R. Barzilay & M.-Y. Kan (A c. Di), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 85–91). Vancouver, Canada: Association for Computational Linguistics. https://doi.org/10.18653/v1/P17-2014

Novak, J. D., Gowin, B. D., & Johansen, G. T. (1983). The use of concept mapping and knowledge vee mapping with junior high school science students. Science Education, 67(5), 625–645. https://doi.org/10.1002/sce.3730670511

Omelianchuk, K., Raheja, V., & Skurzhanskyi, O. (2021). Text Simplification by Tagging. ArXiv. Recuperato da https://www.semanticscholar.org/paper/Text-Simplification-by-Tagging-Omelianchuk-

Raheja/870673733d381b9b794bd708438890fee2c0adc1

Padovani, F., Marchesi, C., Pasqua, E., Galletti, M., & Nardi, D. (2024). Automatic Text Simplification with LLMs: A Comparative Study in Italian for Children with Language Disorders.

Paetzold, G. H. (2016, settembre 1). Lexical simplification for non-native English speakers. Recuperato da https://www.semanticscholar.org/paper/Lexical-simplification-for-non-native-English-

Paetzold/1d5ba759706d9d975e3cd97f7711e50ff229f244

Phatak, A., Savage, D. W., Ohle, R., Smith, J., & Mago, V. (2022). Medical Text Simplification Using Reinforcement Learning (TESLEA): Deep Learning—Based Text Simplification Approach. JMIR Medical Informatics, 10(11), e38095. https://doi.org/10.2196/38095

Rello, L., Baeza-Yates, R., Bott, S., & Saggion, H. (2013). Simplify or help?: Text simplification strategies for people with dyslexia. International Cross-Disciplinary Conference on Web Accessibility. Recuperato da https://www.semanticscholar.org/paper/Simplify-or-help%3A-text-simplification-strategies-Rello-Baeza-Yates/818041edb714b46e4e299deac2efa9fa67b29c80

Štajner, S. (2015). New data-driven approaches to text simplification. Recuperato da https://www.semanticscholar.org/paper/New-data-driven-approaches-to-text-simplification-%C5%A0tajner/390c19ed1866906d27421e09717607c2605b79f0

Štajner, S., & Glavaš, G. (2017). Leveraging event-based semantics for automated text simplification. Expert Systems with Applications, 82, 383–395. https://doi.org/10.1016/j.eswa.2017.04.005

Truică, C.-O., Stan, A.-I., & Apostol, E.-S. (2023). SimpLex: A lexical text simplification architecture. Neural Computing and Applications, 35(8), 6265–6280. https://doi.org/10.1007/s00521-022-07905-y

Woodsend, K., & Lapata, M. (2011). WikiSimple: Automatic Simplification of Wikipedia Articles. Proceedings of the AAAI Conference on Artificial Intelligence, 25(1), 927–932. https://doi.org/10.1609/aaai.v25i1.7967

Wubben, S., Bosch, A. van den, & Krahmer, E. (2012a, luglio 8). Sentence Simplification by Monolingual Machine Translation. Presentato al Annual Meeting of the Association for Computational Linguistics. Recuperato da https://www.semanticscholar.org/paper/Sentence-Simplification-by-

Monolingual-Machine-Wubben-Bosch/50dfb7358cc85cc7ab0eda68c517164ebd205d42

Wubben, S., Bosch, A. van den, & Krahmer, E. (2012b, luglio 8). Sentence Simplification by Monolingual Machine Translation. Presentato al Annual Meeting of the Association for Computational Linguistics. Recuperato da https://www.semanticscholar.org/paper/Sentence-Simplification-by-

Monolingual-Machine-Wubben-

Bosch/50dfb7358cc85cc7ab0eda68c517164ebd205d42

Zhang, X., & Lapata, M. (2017). Sentence Simplification with Deep Reinforcement Learning. In M. Palmer, R. Hwa, & S. Riedel (A c. Di), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 584–594). Copenhagen, Denmark: Association for Computational Linguistics. https://doi.org/10.18653/v1/D17-1062