AI-DRIVEN MOTOR ASSESSMENT IN SPORTS EDUCATION: CLASSIFYING BASKETBALL PLAYERS THROUGH DROP JUMP PERFORMANCE
Abstract
Keywords
Full Text:
PDFReferences
Aditya, R. S., & Yunus, M. (2024). Talent scouting and standardizing fitness data in football club: Systematic review. Retos: nuevas tendencias en educación física, deporte y recreación, 60, 1382–1389.
Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), Articolo 6. https://doi.org/10.3390/jpm13060951
Arac, A. (2020). Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation. Current Neurology and Neuroscience Reports, 20(8), 29. https://doi.org/10.1007/s11910-020-01049-z
Araújo, D., Couceiro, M., Seifert, L., Sarmento, H., & Davids, K. (2021). Artificial Intelligence in Sport Performance Analysis. Routledge. https://doi.org/10.4324/9781003163589
Barbieri, U., Marsico, E., Piceci, L., Di Fuccio, R., & Cassese, F. P. (2024). THE FUTURE OF EDUCATION: PERSONALIZED LEARNING THROUGH ADAPTIVE IN℡LIGENT TUTORING SYSTEMS WITH NATURAL LANGUAGE AND DEEP LEARNING. ITALIAN JOURNAL OF HEALTH EDUCATION, SPORT AND INCLUSIVE DIDACTICS, 8(3). https://ojs.gsdjournal.it/index.php/gsdj/article/view/1179
Buckley, C., Galna, B., Rochester, L., & Mazzà, C. (2017). Quantification of upper body movements during gait in older adults and in those with Parkinson’s disease: Impact of acceleration realignment methodologies. Gait & posture, 52, 265–271.
Caramiaux, B., Françoise, J., Liu, W., Sanchez, T., & Bevilacqua, F. (2020). Machine Learning Approaches for Motor Learning: A Short Review. Frontiers in Computer Science, 2. https://doi.org/10.3389/fcomp.2020.00016
Carissimo, C., Cerro, G., Libero, T. D., Ferrigno, L., Marino, A., & Rodio, A. (2023). Objective Evaluation of Coordinative Abilities and Training Effectiveness in Sports Scenarios: An Automated Measurement Protocol. IEEE Access, 11, 76996–77008. https://doi.org/10.1109/ACCESS.2023.3290471
Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The Promises and Challenges of Artificial Intelligence for Teachers: A Systematic Review of Research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Fujimura, A., & Sugihara, K. (2005). Geometric analysis and quantitative evaluation of sport teamwork. Systems and Computers in Japan, 36(6), 49–58. https://doi.org/10.1002/scj.20254
Gálvez, A., Chan, V. S., Pérez-Carabaza, S., & Iglesias, A. (2025). Artificial Intelligence and Machine Learning-Based Data Analytics for Sports: General Overview and NBA Case Study. In M. J. Blondin, I. Fister Jr., & P. M. Pardalos (A c. Di), Artificial Intelligence, Optimization, and Data Sciences in Sports (pp. 149–194). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76047-1_5
Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their Applications, 13(4), 18–28. IEEE Intelligent Systems and their Applications. https://doi.org/10.1109/5254.708428
Ivankovi, Z., Radosav, D., & Ivkovi, M. (2010). Appliance of Neural Networks in Basketball Scouting. Acta Polytechnica Hungarica, 7(4).
Kawaguchi, K., Taketomi, S., Mizutani, Y., Uchiyama, E., Ikegami, Y., Tanaka, S., Haga, N., & Nakamura, Y. (2021). Sex-Based Differences in the Drop Vertical Jump as Revealed by Video Motion Capture Analysis Using Artificial Intelligence. Orthopaedic Journal of Sports Medicine, 9(11), 23259671211048188. https://doi.org/10.1177/23259671211048188
Kiely, J., Pickering, C., & Collins, D. J. (2019). Smoothness: An Unexplored Window into Coordinated Running Proficiency. Sports Medicine - Open, 5(1), 43. https://doi.org/10.1186/s40798-019-0215-y
Koop, M. M., Ozinga, S. J., Rosenfeldt, A. B., & Alberts, J. L. (2018). Quantifying turning behavior and gait in Parkinson’s disease using mobile technology. IBRO reports, 5, 10–16.
Kos, A., Wei, Y., Tomažič, S., & Umek, A. (2018). The role of science and technology in sport. Procedia Computer Science, 129, 489–495. https://doi.org/10.1016/j.procs.2018.03.029
Leckey, C., Dyk, N. van, Doherty, C., Lawlor, A., & Delahunt, E. (2025). Machine learning approaches to injury risk prediction in sport: A scoping review with evidence synthesis. British Journal of Sports Medicine, 59(7), 491–500. https://doi.org/10.1136/bjsports-2024-108576
Lin, M. P.-C., & Chang, D. (2024). Exploring Inclusivity in AI Education: Perceptions and Pathways for Diverse Learners. In A. Sifaleras & F. Lin (A c. Di), Generative Intelligence and Intelligent Tutoring Systems (pp. 237–249). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63031-6_21
Mahmoud, C. F., & Sørensen, J. T. (2024). Artificial Intelligence in Personalized Learning with a Focus on Current Developments and Future Prospects. Research and Advances in Education, 3(8), 25–31.
Malfait, B., Dingenen, B., Smeets, A., Staes, F., Pataky, T., Robinson, M. A., Vanrenterghem, J., & Verschueren, S. (2016). Knee and hip joint kinematics predict quadriceps and hamstrings neuromuscular activation patterns in drop jump landings. PloS one, 11(4), e0153737.
Me¸żyk, E., & Unold, O. (2011). Machine learning approach to model sport training. Computers in Human Behavior, 27(5), 1499–1506. https://doi.org/10.1016/j.chb.2010.10.014
Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human brain mapping, 15(1), 1–25.
Osório, A. (2020). Performance Evaluation: Subjectivity, Bias and Judgment Style in Sport. Group Decision and Negotiation, 29(4), 655–678. https://doi.org/10.1007/s10726-020-09672-4
Rouis, M., Coudrat, L., Jaafar, H., Filliard, J. R., Vandewalle, H., Barthelemy, Y., & Driss, T. (2015). Assessment of isokinetic knee strength in elite young female basketball players: Correlation with vertical jump. J Sports Med Phys Fitness, 55(12), 1502–1508.
Saleh, H. M. (2024). Exploring the Role of Artificial Intelligence in Improving Institutional Performance Management in Sports and Scouting Institutions in Thi-Qar Governorate. Miasto Przyszłości, 54, 1785–1801.
Shah, A., Agarwal, V., Shah, D., Jani, H., Sharma, S., Kaya, T., Taber, C., & Raval, M. S. (2025). Predicting Biomechanical Risk Factors for Division—I Women’s Basketball Athletes. ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49660.2025.10887636
Suresh Babu, S., & Dhakshina Moorthy, A. (2024). Application of artificial intelligence in adaptation of gamification in education: A literature review. Computer Applications in Engineering Education, 32(1), e22683. https://doi.org/10.1002/cae.22683
Taha, Z., Musa, R. M., P.P. Abdul Majeed, A., Alim, M. M., & Abdullah, M. R. (2018). The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Human Movement Science, 57, 184–193. https://doi.org/10.1016/j.humov.2017.12.008
Tan, E. C. H., Weng Onn, S., & Montalvo, S. (2024). Measuring Vertical Jump Height With Artificial Intelligence Through a Cell Phone: A Validity and Reliability Report. The Journal of Strength & Conditioning Research, 38(9), e529. https://doi.org/10.1519/JSC.0000000000004854
The MathWorks Inc. (2022). MATLAB version: 9.13. 0 (R2022b). Natick, Massachusetts, United States: The MathWorks Inc.
Theoharopoulos, A., Tsitskaris, G., & Tsaklis, P. (2000). Knee strength of professional basketball players. The Journal of Strength & Conditioning Research, 14(4), 457–463.
Toledo-Pérez, D. C., Rodríguez-Reséndiz, J., Gómez-Loenzo, R. A., & Jauregui-Correa, J. C. (2019). Support Vector Machine-Based EMG Signal Classification Techniques: A Review. Applied Sciences, 9(20), Articolo 20. https://doi.org/10.3390/app9204402
Troisi Lopez, E., Limone, P., Peluso Cassese, F., Setyawan, H., Orhan, B. E., Amato, G., Latino, F., & Tafuri, F. (2025). Drop jump coordination differences in professional and amateur athletes. Journal of Physical Education and Sport, 25(1), 38–43. Scopus. https://doi.org/10.7752/jpes.2025.01005
Troisi Lopez, E., Minino, R., Luca, M. D., Tafuri, F., Sorrentino, G., Sorrentino, P., & Corsi, M.-C. (2025). Artificial Intelligence for automatic movement recognition: A network-based approach (p. 2025.02.27.640538). bioRxiv. https://doi.org/10.1101/2025.02.27.640538
Troisi Lopez, E., Minino, R., Sorrentino, P., Manzo, V., Tafuri, D., Sorrentino, G., & Liparoti, M. (2022). Sensitivity to gait improvement after levodopa intake in Parkinson’s disease: A comparison study among synthetic kinematic indices. In PLoS ONE (Vol. 17, Fascicolo 5 May). https://doi.org/10.1371/journal.pone.0268392
Zagatto, A. M., Dutra, Y. M., Claus, G., de Sousa Malta, E., de Poli, R. A. B., Brisola, G. M. P., & Boullosa, D. (2022). Drop jumps improve repeated sprint ability performances in professional basketball players. Biology of Sport, 39(1), 59–66.
Zago, M., Kleiner, A. F. R., & Federolf, P. A. (2021). Editorial: Machine Learning Approaches to Human Movement Analysis. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.638793
Zhao, X., Ross, G., Dowling, B., & Graham, R. B. (2023). Three-Dimensional Motion Capture Data of a Movement Screen from 183 Athletes. Scientific Data, 10, 235. https://doi.org/10.1038/s41597-023-02082-6
DOI: https://doi.org/10.32043/gsd.v9i2.1354
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 ITALIAN JOURNAL OF HEALTH EDUCATION, SPORT AND INCLUSIVE DIDACTICS

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Italian Journal of Health Education, Sports and Inclusive Didactics
ISSN printed: 2532-3296