AI-DRIVEN MOTOR ASSESSMENT IN SPORTS EDUCATION: CLASSIFYING BASKETBALL PLAYERS THROUGH DROP JUMP PERFORMANCE

Emahnuel Troisi Lopez, Mario De Luca, Arianna Polverino, Enrica Gallo, Roberta Minino

Abstract


The use of artificial intelligence (AI) in motor and sports contexts promises improvements in performance enhancement, and psychophysical wellbeing of both athletes and educators. This study used AI to classify amateur and professional basketball players through drop jump performance, using a support vector machine to joint smoothness data. The model reached 80% accuracy, with key differences in knee movement. Results show that AI may support educators within motor and sports education contexts.

Keywords


artificial intelligence, basketball, movement analysis

Full Text:

PDF

References


Aditya, R. S., & Yunus, M. (2024). Talent scouting and standardizing fitness data in football club: Systematic review. Retos: nuevas tendencias en educación física, deporte y recreación, 60, 1382–1389.

Al Kuwaiti, A., Nazer, K., Al-Reedy, A., Al-Shehri, S., Al-Muhanna, A., Subbarayalu, A. V., Al Muhanna, D., & Al-Muhanna, F. A. (2023). A Review of the Role of Artificial Intelligence in Healthcare. Journal of Personalized Medicine, 13(6), Articolo 6. https://doi.org/10.3390/jpm13060951

Arac, A. (2020). Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation. Current Neurology and Neuroscience Reports, 20(8), 29. https://doi.org/10.1007/s11910-020-01049-z

Araújo, D., Couceiro, M., Seifert, L., Sarmento, H., & Davids, K. (2021). Artificial Intelligence in Sport Performance Analysis. Routledge. https://doi.org/10.4324/9781003163589

Barbieri, U., Marsico, E., Piceci, L., Di Fuccio, R., & Cassese, F. P. (2024). THE FUTURE OF EDUCATION: PERSONALIZED LEARNING THROUGH ADAPTIVE IN℡LIGENT TUTORING SYSTEMS WITH NATURAL LANGUAGE AND DEEP LEARNING. ITALIAN JOURNAL OF HEALTH EDUCATION, SPORT AND INCLUSIVE DIDACTICS, 8(3). https://ojs.gsdjournal.it/index.php/gsdj/article/view/1179

Buckley, C., Galna, B., Rochester, L., & Mazzà, C. (2017). Quantification of upper body movements during gait in older adults and in those with Parkinson’s disease: Impact of acceleration realignment methodologies. Gait & posture, 52, 265–271.

Caramiaux, B., Françoise, J., Liu, W., Sanchez, T., & Bevilacqua, F. (2020). Machine Learning Approaches for Motor Learning: A Short Review. Frontiers in Computer Science, 2. https://doi.org/10.3389/fcomp.2020.00016

Carissimo, C., Cerro, G., Libero, T. D., Ferrigno, L., Marino, A., & Rodio, A. (2023). Objective Evaluation of Coordinative Abilities and Training Effectiveness in Sports Scenarios: An Automated Measurement Protocol. IEEE Access, 11, 76996–77008. https://doi.org/10.1109/ACCESS.2023.3290471

Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The Promises and Challenges of Artificial Intelligence for Teachers: A Systematic Review of Research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Fujimura, A., & Sugihara, K. (2005). Geometric analysis and quantitative evaluation of sport teamwork. Systems and Computers in Japan, 36(6), 49–58. https://doi.org/10.1002/scj.20254

Gálvez, A., Chan, V. S., Pérez-Carabaza, S., & Iglesias, A. (2025). Artificial Intelligence and Machine Learning-Based Data Analytics for Sports: General Overview and NBA Case Study. In M. J. Blondin, I. Fister Jr., & P. M. Pardalos (A c. Di), Artificial Intelligence, Optimization, and Data Sciences in Sports (pp. 149–194). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76047-1_5

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their Applications, 13(4), 18–28. IEEE Intelligent Systems and their Applications. https://doi.org/10.1109/5254.708428

Ivankovi, Z., Radosav, D., & Ivkovi, M. (2010). Appliance of Neural Networks in Basketball Scouting. Acta Polytechnica Hungarica, 7(4).

Kawaguchi, K., Taketomi, S., Mizutani, Y., Uchiyama, E., Ikegami, Y., Tanaka, S., Haga, N., & Nakamura, Y. (2021). Sex-Based Differences in the Drop Vertical Jump as Revealed by Video Motion Capture Analysis Using Artificial Intelligence. Orthopaedic Journal of Sports Medicine, 9(11), 23259671211048188. https://doi.org/10.1177/23259671211048188

Kiely, J., Pickering, C., & Collins, D. J. (2019). Smoothness: An Unexplored Window into Coordinated Running Proficiency. Sports Medicine - Open, 5(1), 43. https://doi.org/10.1186/s40798-019-0215-y

Koop, M. M., Ozinga, S. J., Rosenfeldt, A. B., & Alberts, J. L. (2018). Quantifying turning behavior and gait in Parkinson’s disease using mobile technology. IBRO reports, 5, 10–16.

Kos, A., Wei, Y., Tomažič, S., & Umek, A. (2018). The role of science and technology in sport. Procedia Computer Science, 129, 489–495. https://doi.org/10.1016/j.procs.2018.03.029

Leckey, C., Dyk, N. van, Doherty, C., Lawlor, A., & Delahunt, E. (2025). Machine learning approaches to injury risk prediction in sport: A scoping review with evidence synthesis. British Journal of Sports Medicine, 59(7), 491–500. https://doi.org/10.1136/bjsports-2024-108576

Lin, M. P.-C., & Chang, D. (2024). Exploring Inclusivity in AI Education: Perceptions and Pathways for Diverse Learners. In A. Sifaleras & F. Lin (A c. Di), Generative Intelligence and Intelligent Tutoring Systems (pp. 237–249). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63031-6_21

Mahmoud, C. F., & Sørensen, J. T. (2024). Artificial Intelligence in Personalized Learning with a Focus on Current Developments and Future Prospects. Research and Advances in Education, 3(8), 25–31.

Malfait, B., Dingenen, B., Smeets, A., Staes, F., Pataky, T., Robinson, M. A., Vanrenterghem, J., & Verschueren, S. (2016). Knee and hip joint kinematics predict quadriceps and hamstrings neuromuscular activation patterns in drop jump landings. PloS one, 11(4), e0153737.

Me¸żyk, E., & Unold, O. (2011). Machine learning approach to model sport training. Computers in Human Behavior, 27(5), 1499–1506. https://doi.org/10.1016/j.chb.2010.10.014

Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human brain mapping, 15(1), 1–25.

Osório, A. (2020). Performance Evaluation: Subjectivity, Bias and Judgment Style in Sport. Group Decision and Negotiation, 29(4), 655–678. https://doi.org/10.1007/s10726-020-09672-4

Rouis, M., Coudrat, L., Jaafar, H., Filliard, J. R., Vandewalle, H., Barthelemy, Y., & Driss, T. (2015). Assessment of isokinetic knee strength in elite young female basketball players: Correlation with vertical jump. J Sports Med Phys Fitness, 55(12), 1502–1508.

Saleh, H. M. (2024). Exploring the Role of Artificial Intelligence in Improving Institutional Performance Management in Sports and Scouting Institutions in Thi-Qar Governorate. Miasto Przyszłości, 54, 1785–1801.

Shah, A., Agarwal, V., Shah, D., Jani, H., Sharma, S., Kaya, T., Taber, C., & Raval, M. S. (2025). Predicting Biomechanical Risk Factors for Division—I Women’s Basketball Athletes. ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49660.2025.10887636

Suresh Babu, S., & Dhakshina Moorthy, A. (2024). Application of artificial intelligence in adaptation of gamification in education: A literature review. Computer Applications in Engineering Education, 32(1), e22683. https://doi.org/10.1002/cae.22683

Taha, Z., Musa, R. M., P.P. Abdul Majeed, A., Alim, M. M., & Abdullah, M. R. (2018). The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Human Movement Science, 57, 184–193. https://doi.org/10.1016/j.humov.2017.12.008

Tan, E. C. H., Weng Onn, S., & Montalvo, S. (2024). Measuring Vertical Jump Height With Artificial Intelligence Through a Cell Phone: A Validity and Reliability Report. The Journal of Strength & Conditioning Research, 38(9), e529. https://doi.org/10.1519/JSC.0000000000004854

The MathWorks Inc. (2022). MATLAB version: 9.13. 0 (R2022b). Natick, Massachusetts, United States: The MathWorks Inc.

Theoharopoulos, A., Tsitskaris, G., & Tsaklis, P. (2000). Knee strength of professional basketball players. The Journal of Strength & Conditioning Research, 14(4), 457–463.

Toledo-Pérez, D. C., Rodríguez-Reséndiz, J., Gómez-Loenzo, R. A., & Jauregui-Correa, J. C. (2019). Support Vector Machine-Based EMG Signal Classification Techniques: A Review. Applied Sciences, 9(20), Articolo 20. https://doi.org/10.3390/app9204402

Troisi Lopez, E., Limone, P., Peluso Cassese, F., Setyawan, H., Orhan, B. E., Amato, G., Latino, F., & Tafuri, F. (2025). Drop jump coordination differences in professional and amateur athletes. Journal of Physical Education and Sport, 25(1), 38–43. Scopus. https://doi.org/10.7752/jpes.2025.01005

Troisi Lopez, E., Minino, R., Luca, M. D., Tafuri, F., Sorrentino, G., Sorrentino, P., & Corsi, M.-C. (2025). Artificial Intelligence for automatic movement recognition: A network-based approach (p. 2025.02.27.640538). bioRxiv. https://doi.org/10.1101/2025.02.27.640538

Troisi Lopez, E., Minino, R., Sorrentino, P., Manzo, V., Tafuri, D., Sorrentino, G., & Liparoti, M. (2022). Sensitivity to gait improvement after levodopa intake in Parkinson’s disease: A comparison study among synthetic kinematic indices. In PLoS ONE (Vol. 17, Fascicolo 5 May). https://doi.org/10.1371/journal.pone.0268392

Zagatto, A. M., Dutra, Y. M., Claus, G., de Sousa Malta, E., de Poli, R. A. B., Brisola, G. M. P., & Boullosa, D. (2022). Drop jumps improve repeated sprint ability performances in professional basketball players. Biology of Sport, 39(1), 59–66.

Zago, M., Kleiner, A. F. R., & Federolf, P. A. (2021). Editorial: Machine Learning Approaches to Human Movement Analysis. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.638793

Zhao, X., Ross, G., Dowling, B., & Graham, R. B. (2023). Three-Dimensional Motion Capture Data of a Movement Screen from 183 Athletes. Scientific Data, 10, 235. https://doi.org/10.1038/s41597-023-02082-6




DOI: https://doi.org/10.32043/gsd.v9i2.1354

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 ITALIAN JOURNAL OF HEALTH EDUCATION, SPORT AND INCLUSIVE DIDACTICS

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Italian Journal of Health Education, Sports and Inclusive Didactics 
ISSN printed: 2532-3296