EVALUATING THE RELIABILITY OF SELF-MEASURED ANTHROPOMETRIC DATA: A PILOT STUDY IN HEALTHY ADULTS

Davide Mayol, Mariasole Antonietta Guerriero, Francesco Paolo Colecchia, Claudia Vetrani

Abstract


Introduction: Anthropometric measurements are essential for assessing cardiometabolic risk but require trained personnel. This pilot study evaluates the discrepancy between self-reported and professional measurements.

Methods: Waist and hip circumferences in 20 healthy adults were compared.

Results: No significant difference for waist, significant underestimation for hips.

Conclusions: Self-measurement of hips is underestimated; new technologies may improve accuracy.


Keywords


Self-measurement, Circumferences, Technologies

Full Text:

PDF

References


Choudhary, S., Iyer, G., Smith, B. M., Li, J., Sippel, M., Criminisi, A., & Heymsfield, S. B. (2023). Development and validation of an accurate smartphone application for measuring waist-to-hip circumference ratio. NPJ digital medicine, 6(1), 168. https://doi.org/10.1038/s41746-023-00909-5

Chromy, A., Zalud, L., Dobsak, P., Suskevic, I., & Mrkvicova, V. (2015). Limb volume measurements: comparison of accuracy and decisive parameters of the most used present methods. SpringerPlus, 4, 707. https://doi.org/10.1186/s40064-015-1468-7

Gelber, R. P., Gaziano, J. M., Orav, E. J., Manson, J. E., Buring, J. E., & Kurth, T. (2008). Measures of obesity and cardiovascular risk among men and women. Journal of the American College of Cardiology, 52(8), 605–615. https://doi.org/10.1016/j.jacc.2008.03.066

Graybeal, A. J., Brandner, C. F., & Tinsley, G. M. (2023). Evaluation of automated anthropometrics produced by smartphone-based machine learning: a comparison with traditional anthropometric assessments. British Journal of Nutrition, 130(6), 1077–1087. doi:10.1017/S0007114523000090

Heymsfield, S. B., Bourgeois, B., Ng, B. K., Sommer, M. J., Li, X., & Shepherd, J. A. (2018). Digital anthropometry: a critical review. European journal of clinical nutrition, 72(5), 680–687. https://doi.org/10.1038/s41430-018-0145-7

Kushi, L. H., Kaye, S. A., Folsom, A. R., Soler, J. T., & Prineas, R. J. (1988). Accuracy and reliability of self-measurement of body girths. American journal of epidemiology, 128(4), 740–748. ttps://doi.org/10.1093/oxfordjournals.aje.a115027

Medina-Inojosa, J., Somers, V. K., Ngwa, T., Hinshaw, L., & Lopez-Jimenez, F. (2016). Reliability of a 3D Body Scanner for Anthropometric Measurements of Central Obesity. Obesity, open access, 2(3), 10.16966/2380-5528.122. https://doi.org/10.16966/2380-5528.122

Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., Santos, R. D., Arsenault, B., Cuevas, A., Hu, F. B., Griffin, B. A., Zambon, A., Barter, P., Fruchart, J. C., Eckel, R. H., Matsuzawa, Y., & Després, J. P. (2020). Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nature reviews. Endocrinology, 16(3), 177–189. https://doi.org/10.1038/s41574-019-0310-7

Santos, D. A., Dawson, J. A., Matias, C. N., Rocha, P. M., Minderico, C. S., Allison, D. B., Sardinha, L. B., & Silva, A. M. (2014). Reference values for body composition and anthropometric measurements in athletes. PloS one, 9(5), e97846. https://doi.org/10.1371/journal.pone.0097846.

Smith, B., McCarthy, C., Dechenaud, M. E., Wong, M. C., Shepherd, J., & Heymsfield, S. B. (2022). Anthropometric evaluation of a 3D scanning mobile application. Obesity (Silver Spring, Md.), 30(6), 1181–1188. https://doi.org/10.1002/oby.23434

Tinsley, G. M., Rodriguez, C., Siedler, M. R., Tinoco, E., White, S. J., LaValle, C., Brojanac, A., DeHaven, B., Rasco, J., Florez, C. M., & Graybeal, A. J. (2024). Mobile phone applications for 3-dimensional scanning and digital anthropometry: a precision comparison with traditional scanners. European journal of clinical nutrition, 78(6), 509–514. https://doi.org/10.1038/s41430-024-01424-w

Wang, Y., Rimm, E. B., Stampfer, M. J., Willett, W. C., & Hu, F. B. (2005). Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. The American journal of clinical nutrition, 81(3), 555–563. https://doi.org/10.1093/ajcn/81.3.555




DOI: https://doi.org/10.32043/gsd.v9i2.1370

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 ITALIAN JOURNAL OF HEALTH EDUCATION, SPORT AND INCLUSIVE DIDACTICS

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Italian Journal of Health Education, Sports and Inclusive Didactics 
ISSN printed: 2532-3296